Solution to Test 1, MMAT5000

by YU, Rongfeng

- 1. (i)(2 marks) Let A be a non-empty subset of \mathbb{R} . A real number $t = \inf A$ if and only if the following two conditions are satisfied:
 - a) $t \leq a$ for all $a \in A$;
 - b) For each $v \in \mathbb{R}$ satisfying t < v, there exists $a_v \in A$ such that $a_v < v$.

(ii)(4 marks) Let $A = \{x \in \mathbb{R} : 0 < \sin(x^{-1}) < \frac{\sqrt{3}}{2}\}$, then $\inf A = -\pi^{-1}$. We need to show that $-\pi^{-1}$ satisfies the two conditions listed in (i). In fact, for any $x \in A$, we have

$$x^{-1} \in \left(2k\pi, (2k+\frac{1}{3})\pi\right) \bigcup \left((2k+\frac{2}{3})\pi, (2k+1)\pi\right), \ k \in \mathbb{Z}$$

i.e.

$$x \in \left(\frac{3}{6k+1}\pi^{-1}, \frac{1}{2k}\pi^{-1}\right) \bigcup \left(\frac{1}{2k+1}\pi^{-1}, \frac{3}{6k+2}\pi^{-1}\right), \quad k \in \mathbb{Z}.$$

Notice that

$$\frac{3}{6k+1}\pi^{-1} > \frac{1}{2k+1}\pi^{-1} \ge -\pi^{-1}, \text{ for all } k \in \mathbb{Z},$$

so $-\pi^{-1}$ is a lower bound of A, i.e. Condition (a) in (i) holds. Next, for each $v \in \mathbb{R}$ with $-\pi^{-1} < v$,

- If $v \ge 0$, then we can find $-\frac{4}{5}\pi^{-1} \in A$ such that $-\frac{4}{5}\pi^{-1} < 0 \le v$;
- If v < 0, then $v^{-1} < -\pi$. There exists $t_v \in \left(-\frac{4}{3}\pi, -\pi\right)$ such that $v^{-1} < t_v < -\pi$. Set $a_v = t_v^{-1}$, then we have $a_v \in A$ and $a_v < v$.

Condition (b) holds too, so $\inf A = -\pi^{-1}$.

- 2. (6 marks)
 - If c = 3, then $a_n = 3$ for all $n \ge 1$. We will show it by mathematical induction: i) $a_1 = 3$; ii) Assume that $a_k = 3$ for all $k \ge 1$; iii) Then $a_{k+1} = \sqrt{3a_k} = 3$. So $\lim_{n \to \infty} a_n = 3$.
 - If 0 < c < 3, then $0 < a_n < 3$ for all $n \ge 1$. We will show it by mathematical induction: i) $a_1 = c \in (0,3)$; ii) Assume that $a_k \in (0,3)$ for all $k \ge 1$; iii) Then $a_{k+1} = \sqrt{3a_k} \in (0,3)$.

Moreover, for all $n \ge 1$, we have

$$a_{n+1} - a_n = \sqrt{3a_n} - a_n = \sqrt{a_n}(\sqrt{3} - \sqrt{a_n}) > 0$$

So $\{a_n\}_{n\in\mathbb{N}}$ is an increasing sequence and has an upper bound, and hence converges. Set $l = \lim_{n \to \infty} a_n$, then we have

$$\lim_{n \to \infty} a_{n+1} = \lim_{n \to \infty} \sqrt{3a_n},$$

i.e.

$$l=\sqrt{3l},$$

which implies that l = 3. (Here we rejected the case l = 0, since we notice that $a_n \ge c > 0$ for all $n \ge 1$.)

- If c > 3, then $a_n > 3$ for all $n \ge 1$. We will show it by mathematical induction: i) $a_1 = c > 3$; ii) Assume that $a_k > 3$ for all $k \ge 1$; iii) Then $a_{k+1} = \sqrt{3a_k} > 3$. Moreover, for all $n \ge 1$, we have

$$a_{n+1} - a_n = \sqrt{3a_n} - a_n = \sqrt{a_n}(\sqrt{3} - \sqrt{a_n}) < 0.$$

So $\{a_n\}_{n\in\mathbb{N}}$ is a decreasing sequence and has a lower bound, and hence converges. Set $m = \lim_{n \to \infty} a_n$, then we have

$$\lim_{n \to \infty} a_{n+1} = \lim_{n \to \infty} \sqrt{3a_n},$$

i.e.

$$m = \sqrt{3m},$$

which implies that m = 3. (Here we rejected the case m = 0, since we notice that $a_n > 3 > 0$ for all $n \ge 1$.)

Therefore, $\lim_{n \to \infty} a_n = 3.$

3. (i)(5 marks)First, we claim that

$$0 \le y_2 \le y_4 \le \dots \le y_{2n} \le y_{2n+2} \le \dots \le y_{2n+1} \le y_{2n-1} \le \dots \le y_3 \le y_1 = x, \ n \ge 1.$$

It suffices to show that for all $n \ge 1$:

$$y_n \in [0, x], \ y_{2n} \le y_{2n+2}, \ y_{2n+1} \le y_{2n-1}, \ y_{2n} \le y_{2n-1}$$

I) $y_1 - y_2 = \frac{1}{2}y_1^2 \ge 0, \ y_1 - y_3 = \frac{1}{2}y_2^2 \ge 0, \ y_2 - y_4 = \frac{1}{2}(y_3^2 - y_1^2) \ge 0;$ II)Assume that it holds for n = k, i.e. $y_k \in [0, x], \ y_{2k} \le y_{2k+2}, \ y_{2k+1} \le y_{2k-1}, \ y_{2k} \le y_{2k-1}, \ k \ge 1;$ III)For n = k+1, we have $y_{2k+1} - y_{2k} = \frac{1}{2}(y_{2k-1}^2 - y_{2k}^2) \ge 0, \ y_{2k+1} - y_{2k+2} = \frac{1}{2}(y_{2k+1}^2 - y_{2k}^2) \ge 0, \ y_{2k+1} - y_{2k+3} = \frac{1}{2}(y_{2k+2}^2 - y_{2k}^2) \ge 0, \ y_{2k+2} - y_{2k+4} = \frac{1}{2}(y_{2k+3}^2 - y_{2k+1}^2) \le 0.$ Second, for any $p > m \ge 4$,

$$\begin{aligned} |y_p - y_m| &= \frac{1}{2} |y_{p-1}^2 - y_{m-1}^2| \\ &= \frac{1}{2} |y_{p-1} + y_{m-1}| \cdot |y_{p-1} - y_{m-1}| \\ &\leq y_3 \cdot |y_{p-1} - y_{m-1}| \\ &= y_3 \cdot \frac{1}{2} |y_{p-2}^2 - y_{m-2}^2| \\ &= y_3 \cdot \frac{1}{2} |y_{p-2} + y_{m-2}| \cdot |y_{p-2} - y_{m-2}| \\ &\leq y_3^2 \cdot |y_{p-2} - y_{m-2}| \\ &\cdots \\ &\leq y_3^{m-2} \cdot |y_{p-m+2} - y_2| \\ &\leq 2y_3^m, \end{aligned}$$

where we used the fact that $y_n \leq y_3$ for all $n \geq 2$. Direct calculations gives

$$y_3 = x - \frac{1}{2}x^2 + \frac{1}{2}x^3 - \frac{1}{8}x^4 \le \frac{7}{8}, \ x \in [0, 1].$$

Finally, for any $\varepsilon > 0$, there exists $N = \left[\frac{\ln 2 - \ln \varepsilon}{\ln 8 - \ln 7}\right] + 1$ such that for all p > m > N, we have

$$|y_p - y_m| \le 2y_3^m \le 2(\frac{7}{8})^N < \varepsilon.$$

Therefore, $\{y_n\}_{n\in\mathbb{N}}$ is Cauchy.

(ii) (1 marks) If $\varepsilon=0.1,$ then our N=23.