
Solution to Test 1, MMAT5000

by YU, Rongfeng

1. (i)(2 marks) Let A be a non-empty subset of R. A real number t = inf A if and only if the
following two conditions are satisfied:

a) t ≤ a for all a ∈ A ;

b) For each v ∈ R satisfying t < v, there exists av ∈ A such that av < v.

(ii)(4 marks) Let A = {x ∈ R : 0 < sin(x−1) <
√
3
2 }, then inf A = −π−1. We need to show

that −π−1 satisfies the two conditions listed in (i). In fact, for any x ∈ A, we have

x−1 ∈
(

2kπ, (2k +
1

3
)π

)⋃(
(2k +

2

3
)π, (2k + 1)π

)
, k ∈ Z

i.e.

x ∈
(

3

6k + 1
π−1,

1

2k
π−1

)⋃(
1

2k + 1
π−1,

3

6k + 2
π−1

)
, k ∈ Z.

Notice that
3

6k + 1
π−1 >

1

2k + 1
π−1 ≥ −π−1, for all k ∈ Z,

so −π−1 is a lower bound of A, i.e. Condition (a) in (i) holds.
Next, for each v ∈ R with −π−1 < v,

– If v ≥ 0, then we can find −4

5
π−1 ∈ A such that −4

5
π−1 < 0 ≤ v;

– If v < 0, then v−1 < −π. There exists tv ∈
(
−4

3π,−π
)

such that v−1 < tv < −π. Set
av = t−1v , then we have av ∈ A and av < v.

Condition (b) holds too, so inf A = −π−1.

2. (6 marks)

– If c = 3, then an = 3 for all n ≥ 1. We will show it by mathematical induction: i)
a1 = 3; ii) Assume that ak = 3 for all k ≥ 1; iii) Then ak+1 =

√
3ak = 3.

So lim
n→∞

an = 3.

– If 0 < c < 3, then 0 < an < 3 for all n ≥ 1. We will show it by mathematical
induction: i) a1 = c ∈ (0, 3); ii) Assume that ak ∈ (0, 3) for all k ≥ 1; iii) Then
ak+1 =

√
3ak ∈ (0, 3).

Moreover, for all n ≥ 1, we have

an+1 − an =
√

3an − an =
√
an(
√

3−
√
an) > 0.

So {an}n∈N is an increasing sequence and has an upper bound, and hence converges.
Set l = lim

n→∞
an, then we have

lim
n→∞

an+1 = lim
n→∞

√
3an,
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i.e.
l =
√

3l,

which implies that l = 3. (Here we rejected the case l = 0, since we notice that
an ≥ c > 0 for all n ≥ 1.)

– If c > 3, then an > 3 for all n ≥ 1. We will show it by mathematical induction: i)
a1 = c > 3; ii) Assume that ak > 3 for all k ≥ 1; iii) Then ak+1 =

√
3ak > 3.

Moreover, for all n ≥ 1, we have

an+1 − an =
√

3an − an =
√
an(
√

3−
√
an) < 0.

So {an}n∈N is a decreasing sequence and has a lower bound, and hence converges.
Set m = lim

n→∞
an, then we have

lim
n→∞

an+1 = lim
n→∞

√
3an,

i.e.
m =

√
3m,

which implies that m = 3. (Here we rejected the case m = 0, since we notice that
an > 3 > 0 for all n ≥ 1.)

Therefore, lim
n→∞

an = 3.

3. (i)(5 marks)First, we claim that

0 ≤ y2 ≤ y4 ≤ · · · ≤ y2n ≤ y2n+2 ≤ · · · ≤ y2n+1 ≤ y2n−1 ≤ · · · ≤ y3 ≤ y1 = x, n ≥ 1.

It suffices to show that for all n ≥ 1:

yn ∈ [0, x], y2n ≤ y2n+2, y2n+1 ≤ y2n−1, y2n ≤ y2n−1.

I) y1 − y2 = 1
2y

2
1 ≥ 0, y1 − y3 = 1

2y
2
2 ≥ 0, y2 − y4 = 1

2(y23 − y21) ≥ 0;
II)Assume that it holds for n = k, i.e. yk ∈ [0, x], y2k ≤ y2k+2, y2k+1 ≤ y2k−1, y2k ≤
y2k−1, k ≥ 1;
III)For n = k+1, we have y2k+1−y2k = 1

2(y22k−1−y22k) ≥ 0, y2k+1−y2k+2 = 1
2(y22k+1−y22k) ≥

0, y2k+1 − y2k+3 = 1
2(y22k+2 − y22k) ≥ 0, y2k+2 − y2k+4 = 1

2(y22k+3 − y22k+1) ≤ 0.

Second, for any p > m ≥ 4,

|yp − ym| =
1

2
|y2p−1 − y2m−1|

=
1

2
|yp−1 + ym−1| · |yp−1 − ym−1|

≤ y3 · |yp−1 − ym−1|

= y3 ·
1

2
|y2p−2 − y2m−2|

= y3 ·
1

2
|yp−2 + ym−2| · |yp−2 − ym−2|

≤ y23 · |yp−2 − ym−2|
· · · · · ·

≤ ym−23 · |yp−m+2 − y2|
≤ 2ym3 ,
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where we used the fact that yn ≤ y3 for all n ≥ 2.
Direct calculations gives

y3 = x− 1

2
x2 +

1

2
x3 − 1

8
x4 ≤ 7

8
, x ∈ [0, 1].

Finally, for any ε > 0, there exists N =

[
ln 2− ln ε

ln8− ln7

]
+ 1 such that for all p > m > N, we

have

|yp − ym| ≤ 2ym3 ≤ 2(
7

8
)N < ε.

Therefore, {yn}n∈N is Cauchy.

(ii)(1 marks) If ε = 0.1, then our N = 23.
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